Sri Lanka - Methane emissions (kt of CO2 equivalent)

The value for Methane emissions (kt of CO2 equivalent) in Sri Lanka was 10,030 as of 2018. As the graph below shows, over the past 28 years this indicator reached a maximum value of 19,470 in 1995 and a minimum value of 7,610 in 2001.

Definition: Methane emissions are those stemming from human activities such as agriculture and from industrial methane production.

Source: European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/

See also:

Year Value
1990 18,400
1991 18,230
1992 18,710
1993 19,170
1994 19,280
1995 19,470
1996 16,700
1997 14,590
1998 11,720
1999 9,940
2000 7,690
2001 7,610
2002 7,830
2003 8,220
2004 7,880
2005 8,560
2006 8,610
2007 8,460
2008 9,160
2009 8,980
2010 9,450
2011 9,640
2012 9,760
2013 10,090
2014 9,220
2015 9,650
2016 9,900
2017 9,110
2018 10,030

Development Relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.

Limitations and Exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC).

Statistical Concept and Methodology: Methane emissions are those stemming from human activities such as agriculture and from industrial methane production. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CH4 (GWP100=21). The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years.

Aggregation method: Sum

Periodicity: Annual

Classification

Topic: Environment Indicators

Sub-Topic: Emissions