North America - Nitrous oxide emissions (thousand metric tons of CO2 equivalent)

The value for Nitrous oxide emissions (thousand metric tons of CO2 equivalent) in North America was 293,180 as of 2018. As the graph below shows, over the past 28 years this indicator reached a maximum value of 328,560 in 1996 and a minimum value of 280,040 in 2009.

Definition: Nitrous oxide emissions are emissions from agricultural biomass burning, industrial activities, and livestock management.

Source: European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/

See also:

Year Value
1990 291,550
1991 292,480
1992 299,360
1993 303,910
1994 314,220
1995 318,640
1996 328,560
1997 320,460
1998 313,570
1999 306,160
2000 301,700
2001 293,950
2002 295,370
2003 300,850
2004 301,220
2005 301,180
2006 298,730
2007 305,720
2008 290,420
2009 280,040
2010 285,660
2011 296,190
2012 289,060
2013 289,320
2014 288,320
2015 284,500
2016 289,500
2017 290,690
2018 293,180

Development Relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.

Limitations and Exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC).

Statistical Concept and Methodology: Nitrous oxide emissions are mainly from fossil fuel combustion, fertilizers, rainforest fires, and animal waste. Nitrous oxide is a powerful greenhouse gas, with an estimated atmospheric lifetime of 114 years, compared with 12 years for methane. The per kilogram global warming potential of nitrous oxide is nearly 310 times that of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.

Aggregation method: Sum

Periodicity: Annual

Classification

Topic: Environment Indicators

Sub-Topic: Emissions