Ireland - Nitrous oxide emissions (thousand metric tons of CO2 equivalent)

The value for Nitrous oxide emissions (thousand metric tons of CO2 equivalent) in Ireland was 10,060 as of 2018. As the graph below shows, over the past 28 years this indicator reached a maximum value of 11,080 in 1998 and a minimum value of 8,870 in 2011.

Definition: Nitrous oxide emissions are emissions from agricultural biomass burning, industrial activities, and livestock management.

Source: European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/

See also:

Year Value
1990 10,090
1991 9,830
1992 9,910
1993 10,260
1994 10,490
1995 10,520
1996 10,440
1997 10,590
1998 11,080
1999 10,810
2000 10,710
2001 10,470
2002 10,780
2003 10,180
2004 9,840
2005 9,590
2006 9,410
2007 9,230
2008 9,190
2009 9,440
2010 8,990
2011 8,870
2012 9,370
2013 9,300
2014 9,230
2015 9,360
2016 9,420
2017 9,760
2018 10,060

Development Relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.

Limitations and Exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC).

Statistical Concept and Methodology: Nitrous oxide emissions are mainly from fossil fuel combustion, fertilizers, rainforest fires, and animal waste. Nitrous oxide is a powerful greenhouse gas, with an estimated atmospheric lifetime of 114 years, compared with 12 years for methane. The per kilogram global warming potential of nitrous oxide is nearly 310 times that of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.

Aggregation method: Sum

Periodicity: Annual

Classification

Topic: Environment Indicators

Sub-Topic: Emissions