Iraq - CO2 emissions from solid fuel consumption (% of total)

CO2 emissions from solid fuel consumption (% of total) in Iraq was 0.000 as of 2016. Its highest value over the past 56 years was 0.089 in 1960, while its lowest value was 0.000 in 1992.

Definition: Carbon dioxide emissions from solid fuel consumption refer mainly to emissions from use of coal as an energy source.

Source: Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Tennessee, United States.

See also:

Year Value
1960 0.089
1961 0.042
1962 0.041
1963 0.039
1964 0.040
1965 0.019
1966 0.013
1967 0.020
1968 0.019
1969 0.016
1970 0.015
1971 0.038
1972 0.025
1973 0.012
1974 0.036
1975 0.011
1976 0.008
1977 0.008
1978 0.009
1979 0.007
1980 0.008
1981 0.011
1982 0.012
1983 0.009
1984 0.009
1985 0.008
1986 0.008
1987 0.007
1988 0.005
1989 0.005
1990 0.006
1991 0.008
1992 0.000
1993 0.000
1994 0.000
1995 0.000
1996 0.000
1997 0.000
1998 0.000
1999 0.000
2000 0.000
2001 0.000
2002 0.000
2003 0.000
2004 0.000
2005 0.000
2006 0.000
2007 0.000
2008 0.000
2009 0.000
2010 0.000
2011 0.000
2012 0.000
2013 0.000
2014 0.000
2015 0.000
2016 0.000

Development Relevance: Carbon dioxide (CO2) is naturally occurring gas fixed by photosynthesis into organic matter. A byproduct of fossil fuel combustion and biomass burning, it is also emitted from land use changes and other industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth's radiative balance. It is the reference gas against which other greenhouse gases are measured, thus having a Global Warming Potential of 1. An emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. Burning of carbon-based fuels since the industrial revolution has rapidly increased concentrations of atmospheric carbon dioxide, increasing the rate of global warming and causing anthropogenic climate change. It is also a major source of ocean acidification since it dissolves in water to form carbonic acid. The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.

Limitations and Exceptions: The U.S. Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) calculates annual anthropogenic emissions from data on fossil fuel consumption (from the United Nations Statistics Division's World Energy Data Set) and world cement manufacturing (from the U.S. Department of Interior's Geological Survey, USGS 2011). Although estimates of global carbon dioxide emissions are probably accurate within 10 percent (as calculated from global average fuel chemistry and use), country estimates may have larger error bounds. Trends estimated from a consistent time series tend to be more accurate than individual values. Each year the CDIAC recalculates the entire time series since 1949, incorporating recent findings and corrections. Estimates exclude fuels supplied to ships and aircraft in international transport because of the difficulty of apportioning the fuels among benefiting countries.

Statistical Concept and Methodology: The U.S. Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) calculates annual anthropogenic emissions from data on fossil fuel consumption (from the United Nations Statistics Division's World Energy Data Set) and world cement manufacturing (from the U.S. Department of Interior's Geological Survey (USGS 2011)). Although estimates of global carbon dioxide emissions are probably accurate within 10 percent (as calculated from global average fuel chemistry and use), country estimates may have larger error bounds. Trends estimated from a consistent time series tend to be more accurate than individual values. Each year the CDIAC recalculates the entire time series since 1949, incorporating recent findings and corrections. Estimates exclude fuels supplied to ships and aircraft in international transport because of the difficulty of apportioning the fuels among benefiting countries.

Aggregation method: Weighted average

Periodicity: Annual

Classification

Topic: Environment Indicators

Sub-Topic: Emissions