Bangladesh - Nitrous oxide emissions (thousand metric tons of CO2 equivalent)

The value for Nitrous oxide emissions (thousand metric tons of CO2 equivalent) in Bangladesh was 29,240 as of 2018. As the graph below shows, over the past 28 years this indicator reached a maximum value of 29,240 in 2018 and a minimum value of 16,420 in 1990.

Definition: Nitrous oxide emissions are emissions from agricultural biomass burning, industrial activities, and livestock management.

Source: European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/

See also:

Year Value
1990 16,420
1991 17,210
1992 17,510
1993 17,890
1994 18,540
1995 19,810
1996 20,360
1997 19,880
1998 19,930
1999 21,190
2000 21,360
2001 21,820
2002 22,400
2003 21,930
2004 22,060
2005 22,830
2006 23,860
2007 23,950
2008 26,030
2009 25,530
2010 26,060
2011 27,070
2012 26,470
2013 26,650
2014 27,550
2015 28,210
2016 27,270
2017 28,400
2018 29,240

Development Relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.

Limitations and Exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC).

Statistical Concept and Methodology: Nitrous oxide emissions are mainly from fossil fuel combustion, fertilizers, rainforest fires, and animal waste. Nitrous oxide is a powerful greenhouse gas, with an estimated atmospheric lifetime of 114 years, compared with 12 years for methane. The per kilogram global warming potential of nitrous oxide is nearly 310 times that of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.

Aggregation method: Sum

Periodicity: Annual

Classification

Topic: Environment Indicators

Sub-Topic: Emissions