Armenia - Methane emissions (kt of CO2 equivalent)

The value for Methane emissions (kt of CO2 equivalent) in Armenia was 2,430 as of 2018. As the graph below shows, over the past 28 years this indicator reached a maximum value of 3,590 in 1990 and a minimum value of 1,830 in 2000.

Definition: Methane emissions are those stemming from human activities such as agriculture and from industrial methane production.

Source: European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/

See also:

Year Value
1990 3,590
1991 3,420
1992 3,170
1993 2,940
1994 2,770
1995 2,610
1996 2,460
1997 2,300
1998 2,100
1999 1,950
2000 1,830
2001 1,880
2002 1,930
2003 1,980
2004 2,040
2005 2,070
2006 2,150
2007 2,240
2008 2,310
2009 2,310
2010 2,370
2011 2,370
2012 2,420
2013 2,500
2014 2,540
2015 2,560
2016 2,570
2017 2,510
2018 2,430

Development Relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.

Limitations and Exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC).

Statistical Concept and Methodology: Methane emissions are those stemming from human activities such as agriculture and from industrial methane production. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CH4 (GWP100=21). The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years.

Aggregation method: Sum

Periodicity: Annual

Classification

Topic: Environment Indicators

Sub-Topic: Emissions