Ukraine - Land under cereal production (hectares)

The value for Land under cereal production (hectares) in Ukraine was 14,242,360 as of 2018. As the graph below shows, over the past 26 years this indicator reached a maximum value of 15,552,170 in 2013 and a minimum value of 11,664,800 in 1996.

Definition: Land under cereal production refers to harvested area, although some countries report only sown or cultivated area. Cereals include wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains. Production data on cereals relate to crops harvested for dry grain only. Cereal crops harvested for hay or harvested green for food, feed, or silage and those used for grazing are excluded.

Source: Food and Agriculture Organization, electronic files and web site.

See also:

Year Value
1992 12,546,370
1993 12,991,630
1994 12,060,820
1995 12,880,700
1996 11,664,800
1997 13,811,700
1998 12,183,050
1999 11,963,130
2000 12,207,510
2001 14,246,650
2002 13,801,680
2003 12,067,200
2004 14,409,100
2005 14,204,100
2006 13,806,910
2007 13,117,190
2008 15,127,170
2009 15,118,550
2010 14,188,230
2011 14,988,910
2012 14,492,410
2013 15,552,170
2014 14,405,800
2015 14,399,520
2016 14,020,400
2017 14,061,110
2018 14,242,360

Development Relevance: The cultivation of cereals varies widely in different countries and depends partly upon the development of the economy. Production depends on the nature of the soil, the amount of rainfall, irrigation, quality od seeds, and the techniques applied to promote growth. In developed countries, cereal crops are universally machine-harvested, typically using a combine harvester, which cuts, threshes, and winnows the grain during a single pass across the field. In many industrialized countries, particularly in the United States and Canada, farmers commonly deliver their newly harvested grain to a grain elevator or a storage facility that consolidates the crops of many farmers. In developing countries, a variety of harvesting methods are used in cereal cultivation, depending on the cost of labor, from small combines to hand tools such as the scythe or cradle. Crop production systems have evolved rapidly over the past century and have resulted in significantly increased crop yields, but have also created undesirable environmental side-effects such as soil degradation and erosion, pollution from chemical fertilizers and agrochemicals and a loss of bio-diversity. Factors such as the green revolution, has led to impressive progress in increasing cereals yields over the last few decades. This progress, however, is not equal across all regions. Continued progress depends on maintaining agricultural research and education. The cultivation of cereals varies widely in different countries and depends partly upon the development of the economy. Production depends on the nature of the soil, the amount of rainfall, irrigation, quality of seeds, and the techniques applied to promote growth. Agriculture is still a major sector in many economies, and agricultural activities provide developing countries with food and revenue. But agricultural activities also can degrade natural resources. Poor farming practices can cause soil erosion and loss of soil fertility. Efforts to increase productivity by using chemical fertilizers, pesticides, and intensive irrigation have environmental costs and health impacts. Salinization of irrigated land diminishes soil fertility. Thus, inappropriate use of inputs for agricultural production has far-reaching effects. There is no single correct mix of inputs to the agricultural land, as it is dependent on local climate, land quality, and economic development; appropriate levels and application rates vary by country and over time and depend on the type of crops, the climate and soils, and the production process used.

Limitations and Exceptions: The data are collected by the Food and Agriculture Organization of the United Nations (FAO) through annual questionnaires. They are supplemented with information from official secondary data sources. The secondary sources cover official country data from websites of national ministries, national publications and related country data reported by various international organizations. The FAO tries to impose standard definitions and reporting methods, but complete consistency across countries and over time is not possible. Thus, data on agricultural land in different climates may not be comparable. For example, permanent pastures are quite different in nature and intensity in African countries and dry Middle Eastern countries. Data on agricultural land are valuable for conducting studies on a various perspectives concerning agricultural production, food security and for deriving cropping intensity among others uses.

Statistical Concept and Methodology: Cereals production includes wheat, rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed grains. Production data on cereals relate to crops harvested for dry grain only. Cereal crops harvested for hay or harvested green for food, feed, or silage and those used for grazing are excluded. A cereal is a grass cultivated for the edible components of their grain, composed of the endosperm, germ, and bran. Cereal grains are grown in greater quantities and provide more food energy worldwide than any other type of crop; cereal crops therefore can also be called staple crops.

Aggregation method: Sum

Periodicity: Annual

Classification

Topic: Environment Indicators

Sub-Topic: Agricultural production