Venezuela - Energy related methane emissions (% of total)

Energy related methane emissions (% of total) in Venezuela was 49.95 as of 2008. Its highest value over the past 38 years was 59.50 in 2000, while its lowest value was 39.24 in 1987.

Definition: Methane emissions from energy processes are emissions from the production, handling, transmission, and combustion of fossil fuels and biofuels.

Source: World Bank staff estimates from original source: European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/.

See also:

Year Value
1970 55.52
1971 56.38
1972 53.45
1973 55.02
1974 51.17
1975 44.47
1976 43.55
1977 44.58
1978 42.41
1979 43.27
1980 41.99
1981 41.65
1982 40.70
1983 40.14
1984 41.90
1985 40.23
1986 40.36
1987 39.24
1988 40.47
1989 41.07
1990 53.85
1991 54.41
1992 55.39
1993 56.79
1994 57.14
1995 57.93
1996 58.71
1997 58.99
1998 59.14
1999 59.38
2000 59.50
2001 57.91
2002 56.78
2003 55.16
2004 53.71
2005 51.94
2006 51.45
2007 50.65
2008 49.95

Development Relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.

Limitations and Exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC).

Statistical Concept and Methodology: IPCC category 1 = Energy. Methane emissions result largely from agricultural activities, industrial production landfills and wastewater treatment, and other sources such as tropical forest and other vegetation fires. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.

Aggregation method: Weighted average

Periodicity: Annual

Classification

Topic: Environment Indicators

Sub-Topic: Emissions