Denmark - Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent)

The value for Agricultural nitrous oxide emissions (thousand metric tons of CO2 equivalent) in Denmark was 4,120 as of 2018. As the graph below shows, over the past 28 years this indicator reached a maximum value of 5,670 in 1990 and a minimum value of 4,120 in 2018.

Definition: Agricultural nitrous oxide emissions are emissions produced through fertilizer use (synthetic and animal manure), animal waste management, agricultural waste burning (nonenergy, on-site), and savannah burning.

Source: European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/

See also:

Year Value
1990 5,670
1991 5,520
1992 5,180
1993 5,250
1994 5,120
1995 5,060
1996 5,030
1997 5,010
1998 4,900
1999 4,680
2000 4,650
2001 4,580
2002 4,440
2003 4,450
2004 4,260
2005 4,250
2006 4,240
2007 4,270
2008 4,400
2009 4,240
2010 4,200
2011 4,200
2012 4,260
2013 4,150
2014 4,340
2015 4,490
2016 4,460
2017 4,450
2018 4,120

Development Relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.

Limitations and Exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC).

Statistical Concept and Methodology: Agricultural nitrous oxide emissions are emissions produced through fertilizer use (synthetic and animal manure), animal waste management, agricultural waste burning (nonenergy, on-site), and savannah burning. IPCC category 4 = Agriculture. Expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include N2O (GWP100=310).

Aggregation method: Sum

Periodicity: Annual

Classification

Topic: Environment Indicators

Sub-Topic: Emissions